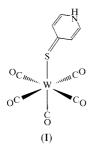
metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Pyridine-pyridine π - π stacking interactions in pentacarbonyl[pyridine-4(1*H*)-thione]tungsten(0)

Moon-Gun Choi^{a,b} and Robert J. Angelici^{b*}

^aDepartment of Chemistry, Yonsei University, Seoul, 120-749, Korea, and ^bAmes Laboratory and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA

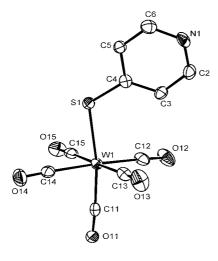

Correspondence e-mail: angelici@iastate.edu

Received 14 January 2000 Accepted 25 April 2000

In the title compound, $[W(C_5H_5NS)(CO)_5]$, the pyridine-4thiol ligand coordinates through the sulfur in the thione mode. The coordination sphere around the W atom is distorted from octahedral geometry by intermolecular hydrogen bonding and steric interactions between the pyridine ring and two CO ligands. An intermolecular pyridine–pyridine ring distance of 3.47 (1) Å indicates π - π stacking interactions between these ligand units.

Comment

Pyridine-4-thiol has been widely used as a ligand in transition metal complexes where it can act as a monodentate ligand to one metal or a bridging ligand to two metals (Bajaj *et al.*, 1998; Coe *et al.*, 1998; Maekawa *et al.*, 1998; Paw *et al.*, 1998). It exists mainly as the pyridine-4(1*H*)-thione tautomer in solution (Etter *et al.*, 1992). Recently, pyridine-4-thiol attracted considerable attention because of its relevance as an electron promoter in the redox chemistry of cytochrome c (Hinnen & Niki, 1989) and also because of its self-assembly as monolayers on gold electrodes (Zhong *et al.*, 1999). Although X-ray structural studies of pyridine-4-thione in the [RuCl(pdma)₂-(pyridine-4-thione)]PF₆ [pdma = *o*-phenylenebis(dimethylarsine)] (Coe *et al.*, 1997) and [Pd₂(μ -dppm)₂(pyridine-4thione)](ClO₄)₂, (dppm = diphenylphosphinomethane)

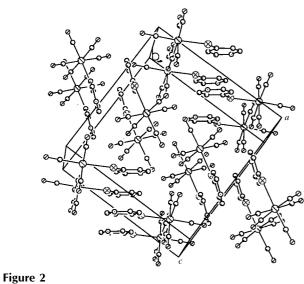

(Maekawa et al., 1998) complexes have been reported previously, neither compound exhibits hydrogen bonding or

 π - π pyridine interactions as occurs in (CO)₅W(pyridine-4-thione), (I), as described herein.

The molecular structure of (I) (Fig. 1) shows that the S atom of a pyridine-4(1H)-thione ligand is coordinated to the tungsten. The W–S bond length of 2.557 (2) Å is similar to the W-S distances observed in the $W(CO)_5(2$ -thiouracilate) anion [2.533 (3) Å; Darensbourg et al., 1999] and in W(CO)₅(pyridine-2-thione) [2.568 (2) Å; Broomhead et al., 1986]. The geometry about tungsten is distorted octahedral, with an S-W-C11 angle of $171.5 (1)^{\circ}$. This distortion appears to be due to steric repulsion between the pyridine ring and two CO ligands, as well as hydrogen bonding between the pyridinium N-H and the O11 atom of an adjacent molecule. Fig. 2 depicts a ball-and-stick representation of the hydrogenbonding motif. It is interesting that the hydrogen bonding exhibited by W(CO)₅(pyridine-2-thione) is of a different type $(N-H \cdot \cdot \cdot S)$ bonds forming a cyclic dimer) than that seen in W(CO)₅(pyridine-4-thione); however, the two crystals do have the same space group and similar cell constants.

The intermolecular hydrogen-bonding distance of N– H···O11($-1 + x, \frac{3}{2} - y, -\frac{1}{2} + z$) is 2.15 Å, the N–H···O11 angle is 158°, and the N···O1 distance is 2.983 (5) Å. This hydrogen bonding increases the C11–W–C13 angle [92.8 (2)°] and decreases the C11–W–C14 angle [86.7 (1)°]. In the pyridine-4-thione ligand, the C–S bond distance [1.719 (4) Å] suggests considerable double-bond character. Mean C–S bond lengths in thiol and thione crystal structures from the Cambridge Structural Database are 1.81 (2) and 1.66 (4) Å, respectively (Etter *et al.*, 1992). It is also noteworthy that the C4–S distance [1.719 (4) Å] is longer than that of free pyridine-4(1*H*)-thione [1.703 (2) Å], which indicates a decrease in C–S π -bonding upon complexation.

The pyridine ring, which approximately bisects two CO ligands, is nearly planar, with an average standard deviation from planarity of the ring atoms of 0.01 Å. The S atom is in the pyridine ring plane. The C4-S-W angle is 117.9 (2) $^{\circ}$, which suggests sp^2 hybridization of the S atom. The angle between the W-S vector and the pyridine ring plane is $8 (1)^{\circ}$. The C2-N-C6 angle of 121.5 (4)° is larger than that of the corresponding bond angles in di-2-pyridyl disulfide which range from 116 to 119° (Raghavan & Seff, 1977). This widening of the C2–N–C6 angle is attributed to the presence of the proton on the N atom. The corresponding angle in pyridine hydrochloride is 128° (Rérat, 1962). Singh (1965) proposed the empirical rule that the angle at a protonated N atom in a six-membered ring will be $125 (3)^{\circ}$, while the angle at an unprotonated nitrogen will be 116 (3)°. The C3-C4 [1.397 (6) Å] and C4–C5 [1.417 (6) Å] carbon–carbon lengths of the ring are slightly longer than those of C2-C3 [1.378 (6) Å] and C5–C6 [1.351 (6) Å]; this difference in C– C bond lengths is not as pronounced as in free pyridine-4(1H)thione (Etter et al., 1992): 1.419 (3), 1.419 (3) versus 1.375 (3), 1.368 (3) Å. The C–N bond lengths [1.334 (6)] and 1.352 (6) Å, respectively] are similar to those [1.346 (3) Å] in free pyridine-4(1H)-thione (Etter et al., 1992). These distances in (I) are consistent with some localized single and double bonding, but there is considerable delocalization in the pyri-


Figure 1

The structure of (I) showing 50% probability displacement ellipsoids and the atomic numbering scheme.

dine ring, more than is found in free pyridine-4(1H)-thione. The overall structure of the pyridine-4(1H)-thione moiety in (I) is similar to that found in the free ligand and in its other complexes (Coe *et al.*, 1997; Maekawa *et al.*, 1998).

In the W(CO)₅ moiety, the W–C11 bond [1.945 (5) Å] is shorter than the W–CO bonds to the four equatorial CO groups, which have an average W–C bond length of 2.044 (5) Å. The short W–C11 bond is due to increased π back bonding from the W atom to the CO ligand *trans* to the S atom.

An examination of the packing diagram in Fig. 2 shows an intermolecular pyridine–pyridine ring distance of 3.47 (1) Å, indicative of π - π stacking interactions. The π - π stacking interactions are stronger than those of W(CO)₅(pyridine-2-thione), in which the intermolecular pyridine–pyridine ring distance is 3.64 (1) Å (Broomhead *et al.*, 1986). Also important to the crystal packing are the N-H···O hydrogen bonds,

The molecular packing diagram of (I).

which give rise to hydrogen-bonded chains of *c*-glide-related molecules. The chains are related to one another by inversion centers. Thus, $N-H\cdots O$ hydrogen bonding and pyridine-pyridine $\pi-\pi$ interactions dominate the crystal packing in the structure.

Experimental

The title compound was synthesized by substitution of the weakly coordinated tetrahydrofuran (thf) ligand with pyridine-4-thiol. A vellow solution of W(CO)5(thf) was prepared (Choi & Angelici, 1991) by photolysis (450 W Ace-Hanovia lamp) of W(CO)₆ (500 mg, 1.42 mmol) in tetrahydrofuran (40 ml). Addition of pyridine-4-thiol (150 mg, 1.35 mmol) to the $W(CO)_5(thf)$ solution causes the color to change from yellow to orange. The resulting orange solution was stirred for 2 h at room temperature and then evaporated under vacuum. The residue was dissolved in CH₂Cl₂ and chromatographed on a neutral alumina column (1×15 cm). The yellow-orange fraction was collected and concentrated under vacuum to give orange microcrystals of (I) (382 mg, 65% yield). Crystals were obtained by layering hexanes onto a solution of (I) in CH₂Cl₂ at 253 K. Analysis calculated for C₁₀H₅O₅NSW: C 27.61, H 1.16, N 3.13%; found: C 27.86, H 1.18, N 3.17%. ¹H NMR (CDCl₃): 7.47 (br t, 2,6H), 7.71 (d, 3,5H), 9.4 (br s, NH) p.p.m.

Crystal data

$[W(C_5H_5NS)(CO)_5]$ $M_r = 435.06$	$D_x = 2.317 \text{ Mg m}^{-3}$ Mo K α radiation
Monoclinic, $P2_1/c$	Cell parameters from 2167
$a = 7.227(1) \text{ Å}^{17}$	reflections
b = 13.256(1) Å	$\theta = 2-26^{\circ}$
c = 13.191(1) Å	$\mu = 9.44 \text{ mm}^{-1}$
$\beta = 99.189 \ (1)^{\circ}$	T = 173 (2) K
$V = 1247.4 (2) \text{ Å}^3$	Block, orange
Z = 4	$0.28 \times 0.16 \times 0.16 \text{ mm}$

Data collection

Siemens SMART CCD diffract-	2167 reflections with $I > 2\sigma(I)$
ometer	$R_{\rm int} = 0.038$
φ and ω scans	$\theta_{\rm max} = 26.37^{\circ}$
Absorption correction: empirical	$h = -9 \rightarrow 9$
(SADABS; Siemens, 1995)	$k = -16 \rightarrow 16$
$T_{\min} = 0.12, \ T_{\max} = 0.22$	$l = -16 \rightarrow 16$
9890 measured reflections	Intensity decay: <1%
2537 independent reflections	

Table 1

Selected geometric parameters (Å, °).

W1-S1	2.5566 (12)	C13-O13	1.121 (6)
W1-C11	1.945 (5)	C14-O14	1.140 (5)
W1-C12	2.033 (5)	C15-O15	1.154 (6)
W1-C13	2.063 (5)	C2-C3	1.378 (6)
W1-C14	2.048 (5)	C3-C4	1.397 (6)
W1-C15	2.033 (5)	C4-C5	1.417 (6)
S1-C4	1.719 (4)	C5-C6	1.351 (6)
C11-O11	1.176 (5)	N1-C2	1.334 (6)
C12-O12	1.146 (6)	N1-C6	1.352 (6)
\$1-W1-C11	171.40 (12)	C11-W1-C12	89.44 (18)
S1-W1-C12	98.29 (14)	C11-W1-C13	92.84 (18)
S1-W1-C13	90.86 (14)	C11-W1-C14	86.69 (17)
S1-W1-C14	85.45 (13)	C11-W1-C15	88.60 (18)
S1-W1-C15	87.66 (13)	C2-N1-C6	121.5 (4)
C4-S1-W1	117.91 (16)		

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.054$ S = 1.032537 reflections 163 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0283P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.45$ e Å⁻³ $\Delta\rho_{min} = -1.36$ e Å⁻³

Except for some residual density in the region of the W1 atom (deepest hole at 0.79 Å from W), the final difference map showed no significant features.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*.

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division, under contract W-7405-Eng-82 with Iowa State University. MGC thanks the Center for Electro- and Photo-responsive Molecules, KOSEF (1999), for partial support. Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1522). Services for accessing these data are described at the back of the journal.

References

- Bajaj, H. C., Das, A. & van Eldik, R. (1998). J. Chem. Soc. Dalton Trans. pp. 1563–1568.
- Broomhead, J. A., Greenwood, R., Pienkowski, W. & Sterns, M. (1986). Aust. J. Chem. 39, 1895–1900.
- Choi, M.-G. & Angelici, R. J. (1991). J. Am. Chem. Soc. 113, 5651-5657.
- Coe, B. J., Hayat, S., Beddoes, R. L., Helliwell, M., Jeffery, J. C., Batten, S. R & White, P. S. (1997). J. Chem. Soc. Dalton Trans. pp. 591–599.
- Darensbourg, D. J., Frost, B. J., Derecskei-Kovacs, A. & Reibenspies, J. H. (1999). Inorg. Chem. 38, 4715–4723.
- Etter, M. C., McDonald, J. C. & Wanke, R. A. (1992). J. Phys. Org. Chem. 5, 191–200.
- Hinnen, C. & Niki, K. (1989). J. Electroanal. Chem. 264, 157-165.
- Maekawa, M., Munakata, M., Kuroda-Sowa, T. & Suenaga, Y. (1998). Inorg. Chim. Acta, 281, 116–119.
- Paw, W., Lachicotte, R. J. & Eisenberg, R. (1998). *Inorg. Chem.* **37**, 4139–4141. Raghavan, N. V. & Seff, K. (1977). *Acta Cryst.* B**33**, 386–391.
- Rérat, P. C. (1962). Acta Cryst. 15, 427–433.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.03. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Version 4.050. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Singh, C. (1965). Acta Cryst. 19, 861-864.
- Zhong, C.-J., Brush, R. C., Andergg, J. & Porter, M. D. (1999). Langmuir, 15, 518–525.